Nonchaotic and Chaotic Behavior in Three-Dimensional Quadratic Systems: Five-One Conservative Cases
نویسندگان
چکیده
In this paper we study the nonchaotic and chaotic behavior of all 3D conservative quadratic ODE systems with five terms on the right-hand side and one nonlinear term (5-1 systems). We prove a theorem which provides sufficient conditions for solutions in 3D autonomous systems being nonchaotic. We show that all but five of these systems:(3.8a,b), (3.11b), (3.34)(A = ∓1), (4.1b),and (4.7a,b) are nonchaotic. Numerical simulations show that only one of the five systems, (4.1b), really appears to be chaotic. If proved to be true, it will be the simplest ODE system having chaos.
منابع مشابه
Determining nonchaotic parameter regions in some simple chaotic jerk functions
In this paper we apply Theorem 2.1 in [Heidel J, Zhang F. Nonchaotic and chaotic behaviour in the three-dimensional quadratic systems: five-one conservative cases, in press] to some simple chaotic jerk functions listed in [Sprott JC. Simple chaotic systems and circuits. Am J Phys 2000;68(8):758–63; Sprott JC. Algebraically simple chaotic flows. Int J Chaos Theory Appl 2000;5(2):1–20] to locate ...
متن کاملChaotic and Nonchaotic Behavior in Three-Dimensional Quadratic Systems: 5-1 dissipative Cases
We show analytically that almost all three-dimensional dissipative quadratic systems of ordinary differential equations with a total of five terms on the right-hand side and one nonlinear term (namely 5-1 cases) are not chaotic except twenty one of them. Indeed we find nine systems that exhibit chaos, which were discovered by Sprott and Malasoma earlier. They are the simplest dissipative chaoti...
متن کاملConservative chaotic flow generated via a pseudo-linear system
Analysis of nonlinear autonomous systems has been a popular field of study in recent decades. As an interesting nonlinear behavior, chaotic dynamics has been intensively investigated since Lorenz discovered the first physical evidence of chaos in his famous equations. Although many chaotic systems have been ever reported in the literature, a systematic and qualitative approach for chaos generat...
متن کاملComplexity in Hamiltonian-driven dissipative chaotic dynamical systems.
The existence of symmetry in chaotic dynamical systems often leads to one or several low-dimensional invariant subspaces in the phase space. We demonstrate that complex behaviors can arise when the dynamics in the invariant subspace is Hamiltonian but the full system is dissipative. In particular, an infinite number of distinct attractors can coexist. These attractors can be quasiperiodic, stra...
متن کاملDynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 17 شماره
صفحات -
تاریخ انتشار 2007